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Abstract

Besides being adopted as the new interchange format
for the Internet, XML is finding increasing acceptance as
a native data repository language. In order to make XML
repositories fully equipped with data management capabil-
ities, suitable query and update languages are being devel-
oped. However, once the user is allowed to perform up-
dates, it is perceivably necessary to guarantee the correct-
ness of his/her updates, especially if document validity or
semantic constraints are violated. We address this problem
by exploiting the well-grounded concept of active rules.

In this paper, we propose Active XQuery, an active lan-
guage for XML repositories that is based on a previously
defined XQuery update model. In particular, we present the
syntax and semantics of our language, aiming at emulat-
ing the trigger definition and execution model of SQL3. An
active extension of XQuery arises nontrivial problems, re-
lated to the need of interleaving updates and triggers. These
problems have led us to define an algorithm for update re-
formulation and to devise a compact semantics. In conclu-
sion, the paper presents an architecture for rapid prototyp-
ing, and hints optimization and research issues.

1. Introduction

XQuery has emerged as the W3C-proposed standard
query language for XML, and time is ripe for the database
research community to study the issues involved with ex-
tending XQuery with advanced reactive capabilities.

Due to its nonprocedural nature, SQL has gained tremen-
dous popularity for developing data-intensive applications.
Relational vendors have a still growing commercial interest
in supporting active features [CCW00], therefore in design-
ing Active XQuery we tried to adhere to the spirit and prac-
tice of trigger definition and execution model of the SQL3
standard.

Our work capitalizes on previous efforts on update lan-
guages for XML and semi-structured data [TI*01, AQ*97].

Unfortunately, the W3C has not yet proposed an XQuery
syntax for updates, although such extension is strongly
needed. Meanwhile, proprietary solutions for updates of
XML documents have been envisioned by tool vendors,
both supporting native XML repositories [Tamino, eX-
celon] or relational-based implementations [Oracle, IBM,
Microsoft]. For this paper, we adopted the XQuery update
extension proposed by [TI*01], that is simple and essential.
Quite luckily, such language is based on few, fundamental
abstractions; therefore our work will be easily adapted to
a forthcoming standardization of XQuery updates based on
similar abstractions.

Compared to relational updates, XQuery updates can be
seen as bulk statements, since they may involve arbitrar-
ily large fragments of documents, which are inserted or
dropped by means of a single statement. These may trig-
ger active rules which monitor events relative to internal
portions of such fragments. Thus, the main difficulty in ex-
tending the notion of triggers from the relational domain to
hierarchical data is indeed due to the different granularity of
update events and rule events. To overcome this difficulty
we have defined an algorithm that expands bulk statements
into a collection of equivalent statements, each one relative
to a smaller fragment, so as to guarantee that any trigger de-
fined for the document will be correctly considered. Each of
these statements is in turn a self-standing XQuery update.

The paper provides the following important contribu-
tions:

1. We propose an active extension to the W3C-proposed
standard XQuery language, adapting the SQL3 notions
of BEFORE vs AFTER triggers as well as the notion of
ROW vs STATEMENT level granularity. W.r.t. SQL3,
we review the definition of conflict set, trigger execu-
tion context and order of execution, in order to suitably
adapt to the hierarchical nature of XML data.

2. We propose an algorithm for transforming bulk state-
ments into expanded statements centered on smaller
fragments; after this transformation, a procedure cor-
rectly invokes triggers and expanded updates.



3. We propose an architecture for the rapid prototyping
of rules on top of an XQuery engine supporting up-
dates, outline optimization options, and point to re-
search problems.

1.1 Background

Querying XML documents based on their semantic con-
tent has been extensively studied within the database and
semi-structured data communities and, ultimately, within
the W3C. Once established, query languages have a natural
extension in supporting content-based updates or in extract-
ing views of XML documents. As exemplars of update lan-
guages for semi-structured data and for XML data respec-
tively, we consider Lorel and XQuery. Lorel [AQ*97] al-
lows the creation and modification of new atomic and com-
plex objects, the creation and deletion of database names,
and the bulk loading of a database. XQuery [XQ01] is
the W3C proposal of a standard query language, and has
been extended to support updates as a result of a research
work [TI*01]. XQuery update operations include deletion,
insertion, replacement and renaming of XML data.

Active rules to enforce the correctness of update op-
erations and to automatically maintain views of data has
been extensively studied in database systems [CCW00].
Many research projects provided substantial contribu-
tions to the the field of active databases (among oth-
ers, Starburst [Wi96], Hipac [DBC96], Reach [BBK*92],
Sentinel [CAM93], and IDEA [CF97]); we adopted
SQL3 [CKM99] as the guide for our language definition
for two reasons. First, we feel that SQL3 execution model
is the most used in commercial systems. Second, we have
found that, upon the extensions that we envision, this model
is suitable for XQuery.

Although until today we could not focus on XQuery (a
recent W3C standard), we already dedicated some of our
previous work to active XML rules. In [BCP00] we have
proposed active extensions of Lorel and XSLT in order
to propose the use of active rules for the implementation
of e-services, such as personalized delivery of information
and push technology. Push technology, applied to a dis-
tributed environment, has been also discussed in [BCP01],
which shows how standard DOM events and the SOAP in-
terchange format can be used to implement a mechanism
for dispatching rules from the rule repository to the XML
repositories spread over Internet.

Other references address the use of reactive components
for building e-commerce applications. Among them, a view
specification language (in the OQL style) equipped with ac-
tive capabilities has been defined in [AC*99]. The actors
involved in an electronic commerce application might need
different views of the repository data, and these are encoded
through a set of activity specifications, methods and trig-

gers. Enhanced mechanisms for notification, access control
and logging/tracing of user activities are provided. Here
active rules are application-specific and use a set of propri-
etary method calls, defined within the views.

1.2 Outline

The paper is organized as follows. Section 2 proposes
motivational examples and provides a bird’s-eye view of
XQuery triggers. Section 3 presents the syntax of the lan-
guage. Section 4 defines the semantics by describing the
expansion algorithm, the execution model and the system
architecture. Section 5 outlines open research issues.

2 A bird’s-eye view of XQuery triggers

We give an intuitive overview of our proposal at work
through a simple example. Let us assume a scenario based
on the following Lib.xml document, that belongs to the
XML repository of a university library::

<Library>
...
<Shelf nr="45">

<Book id="AO97">
<Author> J. Acute </Author>
<Author> J. Obtuse </Author>
<Title> Triangle Inequalities </Title>

</Book>
<Book id="So98">

<Author> A. Sound </Author>
<Title> Automated Reasoning </Title>

</Book>
...

</Shelf>
...

</Library>

An example of update to the library is the bulk insertion
of a whole shelf (nr. 45) into the document by means of
the following XQuery update statement (s0). The new li-
brary content is extracted from a collection of new shelves,
located in a separate document (within the repository). In
order to insert fragment $frag the language requires to
envelop the actual INSERT operation into an external UP-
DATE clause, targeted to a variable that is bound to the ele-
ment that will contain the fragment (node $target). Re-
cursively nested update statements (and therefore UPDATE
clauses) are allowed within the curly brackets.

s0:
FOR $target IN document("Lib.xml")/Library,

$frag IN document("New.xml")/Shelves/Shelf
WHERE $frag/@nr="45"
UPDATE $target { INSERT $frag }

In our scenario, the library automatically maintains an
index with a list of all authors, keeping pointers (IDREFs) to



the library entries. The index is part of the library document,
whose complete DTD is:

<!ELEMENT Lib (Shelf+, AuthorIndex)>
<!ELEMENT Shelf (Book*)>
<!ATTLIST Shelf nr ID #REQUIRED>
<!ELEMENT Book (Author+, Title)>
<!ATTLIST Book id ID #REQUIRED>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT AuthorIndex (AuthorEntry*)>
<!ELEMENT AuthorEntry (Name, PubsCount)>
<!ATTLIST AuthorEntry uni CDATA #IMPLIED

pubs IDREFS #IMPLIED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT PubsCount (#PCDATA)>

The following XML excerpt demonstrates the author index:

<AuthorIndex>
...
<AuthorEntry uni="PoliMi" pubs=".. AO97 ..">
<Name> J. Acute </Name>
<PubsCount> ... </PubsCount>

</AuthorEntry>
...
<AuthorEntry uni="Princeton" pubs=".. So98 ..">
<Name> A. Sound </Name>
<PubsCount> ... </PubsCount>

</AuthorEntry>
...
</AuthorIndex>

Triggers are responsible to guarantee referential integrity
among the authors’ publications (‘pubs’ attribute) and the
books in the library. In particular, we want to guarantee the
following properties:

1. No dangling references: deletion of a ‘Book’ element
causes all its authors (listed in the index) to lose “dan-
gling” references to that publication.

2. Automatic indexing: insertion of a ‘Book’ element
causes a new reference to be inserted in all index en-
tries that represent new book’s authors. This may re-
quire new ‘AuthorEntry’ elements to be added to the
index.

Automatic deletion of dangling pointers is performed by
trigger NoDangle, that updates ‘AuthorEntry’ elements
removing from their ‘pubs’ attributes all references 1 to the
deleted book (identified by keyword OLD NODE):

CREATE TRIGGER NoDangle
AFTER DELETE OF document("Lib.xml")//Book
FOR EACH NODE
DO ( FOR
$AutIndex IN document("Lib.xml")//AuthorIndex,
$MatchAut IN $AutIndex/AuthorEntry

[Name = OLD_NODE/Author],
$DangRef IN $MatchAut/ref(pubs, OLD_NODE/@id)

UPDATE $AutIndex { DELETE $DangRef } )

1Note that bindings to a single IDREF within an IDREFS attribute are
declared according to the syntax extension proposed in [TI*01].

Two other triggers perform the insertion of new refer-
ences and new ‘AuthorEntry’ elements. If one of the authors
of the new book is not yet in the list, the higher-prioritized
trigger AddNewEntry inserts a new “empty” ‘AuthorEn-
try’ element. Thus, low-prioritized trigger AddNewRef-
erence can assume that the index already contains entries
for all the incoming authors.

CREATE TRIGGER AddNewEntry
AFTER INSERT OF document("Lib.xml")//Book
FOR EACH NODE
LET $AuthorsNotInList := (

FOR $n IN NEW_NODE/Author
WHERE empty(//AuthorIndex/AuthorEntry[Name=$n])
RETURN $n )

WHEN ( not( empty($AuthorsNotInList )) )
DO ( FOR $ai IN document("Lib.xml")//AuthorIndex,

$NewAuthor IN $AuthorsNotInList
UPDATE $ai
{ INSERT <AuthorEntry>

<Name> {$NewAuthor/text()} </Name>
<PubsCount> 0 </PubsCount>
</AuthorEntry> } )

CREATE TRIGGER AddNewReference
WITH PRIORITY -10
AFTER INSERT OF document("Lib.xml")//Book
FOR EACH NODE
DO ( FOR $ai IN document("Lib.xml")//AuthorIndex,

$a IN $ai/AuthorEntry[Name=$a]
UPDATE $a
{ INSERT new_ref(pubs, NEW_NODE/@id)} )

Finally, triggers IncrementCounter and Decre-
mentCountermaintain a counter of authors’ publications
(we only show IncrementCounter for brevity).

CREATE TRIGGER IncrementCounter
AFTER INSERT OF //new_ref(pubs)
FOR EACH NODE
LET $Counter := NEW_NODE/../PubsCount
DO ( FOR $AuthorEntry IN NEW_NODE/..

UPDATE $AuthorEntry
{ REPLACE $Counter WITH $Counter + 1 } )

These triggers demonstrate that the execution of the
action part of a trigger can cause the activation of
other triggers (AddNewReference triggers Incre-
mentCounter).

3 Syntax of Active XQuery

An XQuery trigger consists of four components: the
triggering operation, the triggering granularity, the trigger
condition and the trigger action. Consistent with the ter-
minology of [WC96], a trigger is triggered when one of its
triggering operations occur, it is being considered when its
condition is under evaluation, it is executed when its action
is performed. When the trigger consideration starts, it is
also de-triggered.



The syntax of an XQuery trigger is the following:

CREATE TRIGGER Trigger-Name
[WITH PRIORITY Signed-Integer-Number]
(BEFORE|AFTER)

(INSERT|DELETE|REPLACE|RENAME)+
OF XPathExpression (,XPathExpression)*

[FOR EACH (NODE|STATEMENT)]
[XQuery-Let-Clause]
[WHEN XQuery-Where-Clause]
DO (XQuery-UpdateOp|ExternalOp)

� The CREATE TRIGGER clause is used to define a
new XQuery trigger, with the specified name.

� Rules can be prioritized in an absolute ordering, ex-
pressed with an optional WITH PRIORITY clause,
which admits as argument any signed integer number.
If this clause is omitted, the default priority is zero.

� The BEFORE/AFTER clause expresses the triggering
time relative to the operation.

� Each trigger is associated with a set of update oper-
ations (insert, delete, rename, replace), adopted from
the update extension of XQuery [TI*01].

� The operation is relative to elements that match an
XPath expression (specified after the OF keyword), i.e.
a step-by-step path descending the hierarchy of doc-
uments (according to [XPa99] and its update-related
extensions2). One or more predicates (XPath filters)
are allowed in the steps to eliminate nodes that fail to
satisfy given conditions. Once evaluated on document
instances, the XPath expressions result into sequences
of nodes, possibly belonging to different documents.

� The optional clause FOR EACH NODE/STATEMENT
expresses the trigger granularity. A statement-level
trigger executes once for each set of nodes extracted
by evaluating the XPath expressions mentioned above,
while a node-level trigger executes once for each of
those nodes. Based on the trigger granularity, it is pos-
sible to mention in the trigger the transition variables:

– If the trigger is node-level, variables OLD NODE
and NEW NODE denote the affected XML ele-
ment in its before and after state.

– If the trigger is statement-level, variables
OLD NODES and NEW NODES denote the se-
quence of affected XML elements in their before
and after state.

2The additional keyword ref, introduced in [TI*01], can be used to
denote a single IDREF within an attribute of type IDREFS.

� An optional XQuery-Let-Clause is used to define
XQuery variables whose scope covers both the condi-
tion and the action of the trigger. This clause extends
the ‘REFERENCING’ clause of SQL3, because it can
be used to redefine transition variables.

� The WHEN clause represents the trigger condition, and
can be an arbitrarily complex XQuery where clause. If
omitted, a trigger condition that specifies WHEN TRUE
is implicit.

� The action is expressed by means of the DO clause, and
it can contain accomplished through the invocation of
an arbitrarily complex update operation. In addition, a
generic ExternalOp syntax indicates the possibility of
extending the XQuery trigger language with support to
external operations, permitting, e.g., to send mail or to
invoke SOAP procedures; such extensions are outside
the scope of this paper.

For a complete syntax of XQuery refer to [XQ01]. For the
syntax of the update language, refer to [TI*01].

4 Semantics of Active XQuery

4.1 Intuitive semantics

In our view, the intuitive semantics of XQuery triggers
should be as close as possible to the semantics of SQL3 trig-
gers, as discussed in [CKM99]. Accordingly, each XQuery
operation should be computed in the context of a recursive
procedure, such that:

� At the time of execution of an update, the set of af-
fected nodes is computed (leading to the binding of
transition variables).

� A given update statement is preceded by BEFORE trig-
gers and followed by AFTER triggers3; statement-level
and node-level triggers may interleave, and are consid-
ered in priority order.

� If a given trigger executes an operation and this in turn
causes some triggering, the trigger execution context
is suspended, and a new procedure is recursively in-
voked; recursion depth of recursion is limited by some
given threshold, which is system specific.

However, such intuitive semantics cannot be immediately
replicated for XQuery, due to the hierarchical structure of

3In order to avoid nondeterministic and/or nonmonotonic behavior,
BEFORE triggers may be subject to limitations in their actions; such limi-
tations are still a subject of studies in the SQL standards [CKM99] and are
typically implemented in relational systems by suitable exceptions (e.g.,
Oracle’s “mutating table exception”, see [WC96]).



XML and the “bulk” nature of update primitives. Accord-
ing to the update language of [TI*01], the insertion of “con-
tent” may refer to an arbitrarily large XML fragment, and
likewise the deletion of a node may cause the dropping of
an arbitrarily large XML fragment. Note that the SQL lan-
guage supports instead updates operations targeted to tuples
of a given table. Therefore, a precise description of the se-
mantics of XQuery triggers requires to be combined with a
management strategy for bulk updates.

4.2 Update expansion

Our strategy with bulk updates consists of decomposing
each original XQuery bulk update s0 into a sequence S of
smaller granularity updates, such that the change to each
XML element involved in the update is addressed by a self-
standing update operation of S. This strategy requires the
definition of two separate mechanisms, one for expanding
updates and one for executing them, where the latter in-
cludes the composition of updates with triggers. Note that
statement expansion requires accessing the affected XML
data; this is obvious in the case of bulk deletions (when the
specific elements to be deleted need to be first accessed),
but occurs as well with bulk insertions.

An alternative semantics would transform s0 into
another single update statement, consisting of nested
“smaller” updates, such that each element of the XML con-
tent affected by the original bulk statement would be ex-
plicitly inserted or deleted by a “small” update operation.
In this case, composition of triggers and updates occurs as
well, but triggers are invoked within the bulk update execu-
tion.

After a careful trade-off analysis [Bon01] we have ex-
cluded such alternative, because it requires a tight integra-
tion between the trigger engine and the XQuery optimizer,
while the decomposition-based model (that we adopted)
leads to a good separation between the two system compo-
nents. Thus, our approach can be easily supported “on top”
of an existing XQuery optimizer, in the same way as a trig-
ger engine can be easily supported on a relational storage
system [Wi96].

Other advantages characterize our approach:

� With the decomposition-based model, matching trig-
gering events to update operations is trivial: triggering
occurs when the trigger’s update operation is executed.

� The composition of triggers with updates is also rather
simple, and takes place by means of a recursively de-
fined statement execution procedure which is very sim-
ilar to the one discussed in 4.1.

� As with SQL3, the set of nodes affected by an update
is computed by the decomposer, before performing the
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Figure 1. Visit of an XML fragment

update, i.e. according to the semantics of the original
user-level update primitive.

However, we are aware of disadvantages as well:

� An inevitable one is that any decomposition of a bulk
statement into a sequence of statements leads to ex-
posing intermediate states - the ones left by a prefix of
the decomposition sequence; therefore, the decompo-
sition strategy affects the semantics of triggers, as this
in turn is order-dependent. This is inevitable: order
dependence characterizes even relational systems and
is amplified by a hierarchical structure which can be
processed in many ways. Some degree of order depen-
dency, however, is present in both approaches.

� The second disadvantage is that having multiple inde-
pendent and autonomous statements might lead to re-
peated executions of the same tree traversals in sub-
sequent statement executions. In practice, this disad-
vantage is minor, because transparent caching mech-
anisms should make such traversals very efficient;
moreover, simple optimizations could be done, such as
preserving pointers to already computed nodes from
one statement execution to the next one.

In designing the expansion strategy, we use a visit of
the hierarchical structures which mimics the “natural” or-
der of update propagation, in which inserts proceed top-
down, and deletions proceed bottom-up. Such a visit strat-
egy is described, in a simple case of bulk insert, in Figure 1.
The adopted notation displays attributes as black circles,
elements as empty circles and PCDATA content as empty
boxes; dashed lines indicate the nodes that are treated to-
gether; fragments are visited in a mixed breadth-depth or-
der, indicated by numbers. In the first step of the algorithm,
the first-level elements are visited and grouped into a com-
mon update statement: root nodes need to be treated sepa-
rately, since they lack a common ancestor.



4.3 Expansion Algorithm

In the following we detail the expansion process for IN-
SERT statements. DELETE statements expansion is analo-
gous (and omitted for brevity), while REPLACE statements
can be rewritten in terms of INSERT statements immedi-
ately followed by suitable DELETE statements. Instead,
RENAME operations perform mere name changes and do not
require further expansion.

Essentially, expansion proceeds with an intermixed
depth-first and breadth-first visit of the involved fragments.
In particular, all the operations relative to the insertion of
XML nodes with a common father are enveloped in the
same update statement. Among these nodes (that can be
attributes, elements or PCDATA content), attributes are in-
serted first, then elements and PCDATA content are inserted
in their proper order. Elements are inserted as empty cou-
ples of tags if they contain a complex structure (and thus
require further expansion), otherwise they solely have PC-
DATA content, and they are inserted together with such con-
tent.

The function buildContentOfF irstUpdate addresses
the construction of the first expanded statement, targeted to
the same variable as the user update operation (referenced
in the external UPDATE clause). It takes the bulk statement
ST as argument and outputs one update statement that in-
serts all the roots of the involved fragments. Thereafter, the
algorithm starts from each complex root node and expands
its complex sub-elements. This expansion is entrusted to the
function expandNode, which is then recursively invoked
on all complex sub-elements of these elements.

Algorithm 4.1 Bulk Statement Expansion. Given an arbitrary
bulk XQuery update statement ST , the algorithm returns UL, an
ordered list of XQuery expanded update statements and directives.

In a preprocessing phase, the algorithm computes the needed
data structures. Precisely, variable V represents the argument of
the user update clause; variable S contains the bindings to the in-
volved fragments; FClause and WClause are the for and where
clauses of ST ; XFClause is an ad-hoc clause that is repeatedly
used in the construction of the results; cur path is a variable that
is assigned to the current path, as soon as it is available by the visit
of the fragments; variable name is used to name the generated
statements and match them with their corresponding directives.

This version of the algorithm takes care of the expansion
of insert statements, and accepts for simplicity only flat user
statements. Possible nested user updates can be treated via
previous reduction to a list of flat statements.

begin
V = getUpdateVariable(ST)

S = bindInvolvedFragments(ST)
FClause = getFORClause(ST)
WClause = getWHEREClause(ST)

XFClause = FClause + “, $curFrag IN ” + V +
“/*[empty(” + V + “/*[AFTER $curFrag])]”

cur path = “$curFrag”
name = buildUniqueName(cur path)

UL = “EvalBefore(” + name + “) ” + “Name:” + name + “ ”
UL += FClause + WClause
UL += “UPDATE ” + V + “f ”

UL += buildContentOfFirstUpdate(ST) + “g ”
for each fragment in S, consider again its root node N:

if ( N is complex and requires further expansion )

then UL += expandNode(N, cur path, XFClause, WClause)
UL += “EvalAfter(” + name + “) ”

return UL

end;

FUNCTION expandNode(Node N, String cur path,

String XFClause, String WClause)
RETURNS OUT, an ordered list of update statements and directives
begin

name = buildUniqueName(cur path)
OUT = “EvalBefore(” + name + “) ” + “Name:” + name + “ ”
if ( cur path=“$curFrag” )

then OUT += XFClause + WClause +
“UPDATE $curFrag f ”

else OUT += XFClause + “, $cur node IN ” + cur path +
WClause + “UPDATE $cur node f ”

for each attribute A of N
OUT += “INSERT new attribute( ”
OUT += A.name + “, ” + A.value + “) ”

for each subelement C of N
if ( C is an XML-Element )

then if ( C has only PCDATA content )

then OUT += “INSERT ” + buildTagWithPCDATA(C)
else OUT += “INSERT ” + buildEmptyTag(C)

else OUT += “INSERT ” + C.content

OUT += “g ”
for each subelement C of N:

if ( C is complex and requires further expansion )

then cur path += “/*[” + position of C + “]”
OUT += expandNode(C, cur path, XFClause, WClause)

OUT += “EvalAfter(” + name + “) ”

return OUT
end;

Moreover, the algorithm interleaves the statements with
special directives to the rule engine that enable the con-
struction of conflict sets. In particular, the directive
EvalBefore contains the name of the statement that it pre-
cedes, and the directive EvalAfter contains the name of
the statement that it follows. The positions of these direc-
tives within the list of statements reflect the intrinsic seman-
tics of the original statement. If we consider an INSERT
operation, the EvalBefore directives precede each ex-
panded statement, while EvalAfter directives solely fol-
low the expanded statement of the leaf portions of the frag-
ment. The EvalBefore directives that refer to the remain-
ing (non-leaf) portions are postponed by recursion and fol-
low the directive of the last leaf of the fragment, as shown
below.



Example 4.2 We consider the expansion of the bulk state-
ment s0 (from section 2), that inserts an entire shelf in
the document Lib.xml. We need to expand s0 into smaller
self-standing update statements, in order to make the de-
fined triggers sensitive to the insertion of the children of the
‘Shelf’ element. The expansion algorithm outputs the fol-
lowing sequence:

EvalBefore(s1)

Name:s1
FOR $x IN document("Lib.xml")/Library,
$frag IN document("New.xml")/Shelves/Shelf[@nr="45"]

UPDATE $x
{ INSERT <Shelf/> }

EvalBefore(s2)

Name:s2
FOR $x IN document("Lib.xml")/Library,
$frag IN document("New.xml")/Shelves/Shelf[@nr="45"],
$curfragment IN $x/*[empty($x/*[AFTER $curfragment])]

UPDATE $curfragment
{ INSERT new_attribute(nr, "45")

INSERT <Book/>
INSERT <Book/> }

EvalBefore(s3)

Name:s3
FOR $x IN document("Lib.xml")/Library,
$frag IN document("New.xml")/Shelves/Shelf[@nr="45"],
$curfragment IN $x/*[empty($x/*[AFTER $curfragment])],
$cur_node IN $curfragment/*[1]

UPDATE $cur_node
{ INSERT new_attribute(id, "AO97")

INSERT <Author> J. Acute </Author>
INSERT <Author> J. Obtuse </Author>
INSERT <Title> Triangle Inequalities </Title> }

EvalAfter(s3)

EvalBefore(s4)

Name:s4
FOR $x IN document("Lib.xml")/Library,
$frag IN document("New.xml")/Shelves/Shelf[@nr="45"],
$curfragment IN $x/*[empty($x/*[AFTER $curfragment])],
$cur_node IN $curfragment/*[2]

UPDATE $cur_node
{ INSERT new_attribute(id, "So98")

INSERT <Author> A. Sound </Author>
INSERT <Title> Automated Reasoning </Title> }

EvalAfter(s4)

EvalAfter(s2)

EvalAfter(s1)

The order of evaluation of triggers corresponds to the in-
tuitive order that could be expected by a user unaware of
the decomposition process. This can be appreciated if one
considers the hierarchy s1 < s2 < fs3; s4g and the or-
der of execution of before and after triggers. For instance,
the “AFTER INSERT” triggers triggered by s2 (referred to
by the directive EvalAfter(s2)) see the side effects not
only of statements s3 and s4, but also of all trigger execu-
tions caused by them.

4.4 Description of trigger execution model

Given the update decomposition algorithm, we can now
define the trigger execution model precisely, thus giving an
operational semantics of the combined execution of updates
and triggers. As observed, our query execution model is in-
spired to the SQL3 execution model, however adapted to the
hierarchical nature of XML, and exploiting the expansion of
statements.

Assume the XQuery engine is starting the execution of a
generic bulk update statement S, which has been submitted
by the user. The following algorithm defines this semantics
operationally.

PROCEDURE EXECUTE_STATEMENT(Statement S)
1 Call EXPAND_STATEMENT(S) and store the

returned structures (RF and SIL)
2 For each item Ii in SIL, if it is
2.1 an ’EvalBefore’ instruction, call

COMPUTE_BEFORE_CONFLICT_SET(Sn, RF),
where Sn is the statement related to Ii

2.2 an ’EvalAfter’ instruction, call
COMPUTE_AFTER_CONFLICT_SET(Sn, RF),
where Sn is the statement related to Ii

2.3 an update statement, execute Ii,
updating the XML repository

PROCEDURE EXPAND_STATEMENT(Statement S)
RETURNS FragmentSequence RF,

StatementInstructionList SIL
1 Retrieve RF, the set of fragments that are

relevant for the execution of S
2 Expand S into SIL by visiting RF with the

expansion algorithm
3 Return SIL and RF (NEW_RF and/or OLD_RF)

PROCEDURE COMPUTE_BEFORE_CONFLICT_SET
(Statement Sn, FragmentSequence RF)

1 Compute BT, the set of eligible
BEFORE triggers activated by Sn

2 Order all computed triggers according to
their global ordering

3 For each trigger T in BT, PROCESS_TRIGGER(T)

PROCEDURE COMPUTE_AFTER_CONFLICT_SET
(Statement Sn, FragmentSequence RF)

1 Compute AT, the set of eligible AFTER
triggers activated by Sn

2 Order all computed triggers according
to their global ordering

3 For each trigger T in AT, PROCESS_TRIGGER(T)

PROCEDURE PROCESS_TRIGGER(trigger T)
1 Calculate pointers corresponding to

NEW_NODE(S) and OLD_NODE(S).
2 If any, valuate the Let clause of T and bind

the new variables.
3 Evaluate the condition C of T
4 If C evaluates to TRUE, EXECUTE_STATEMENT(A)

(A being the action of T)

In the former algorithm EXECUTE STATEMENT is in-
voked on S. The expansion algorithm 4.1 retrieves the set
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of relevant fragments (RF, involved by S), and produces a
sequence of statements and directives (SIL). SIL is gener-
ated according to the mixed depth-breadth order visit of the
fragments, and this is accomplished by calling procedure
EXPAND STATEMENT. The algorithm needs to communi-
cate with the query engine in order to inspect XML data and
to build RF, which constitutes a separate structure. More
precisely, REPLACE operations will yield both NEW RF and
OLD RF structures, deletions will produce only OLD RF
structures and insertions only NEW RF structures. These
structures are accessed by rules in order to bind transi-
tion variables, as explained below. The last task of EX-
PAND STATEMENT is to return SIL and to rename RF as
NEW RF and/or OLD RF (depending on the type of original
statement S).

Once the EXPAND STATEMENT has been completed,
each item Ii in SIL is one of the following mutually ex-
clusive cases. If the item is an EvalBefore directive,
then the procedure COMPUTE BEFORE CONFLICT SET
is invoked; if it is an EvalAfter directive, then the
procedure COMPUTE AFTER CONFLICT SET is invoked;
otherwise, it is an expanded statement, ready to be ex-
ecuted. Both COMPUTE BEFORE CONFLICT SET and
COMPUTE AFTER CONFLICT SET receive as parameters
the statement Sn referred by the directive and RF.

Procedures COMPUTE BEFORE CONFLICT SET and
COMPUTE AFTER CONFLICT SET respectively calculate
BT and AT, the sets of triggered rules. This defines the
conflict sets pertaining to statement Sn, which include both
statement level and node level triggers, in priority order. For
each trigger T in these conflict sets, PROCESS TRIGGER is

executed with T as parameter. Local pointers are calculated
in order to bind OLD NODE(S) and NEW NODE(S) tran-
sition variables (they may have been used in a LET clause
of T). When the condition evaluates to true, the action of
T is executed by invoking EXECUTE STATEMENT and re-
cursively iterating the execution. When a new statement is
executed, the current trigger execution context is suspended,
and the entire process restarts.

During the processing of bulk statements, data is main-
tained in two places: the XML repository and the sepa-
rate global fragments NEW RF and/or OLD RF, which are
pointed to by local pointers (so we have a useful struc-
ture sharing that avoids redundance). The XML repository
is persistent, while the trigger execution contexts and the
global fragments are stored only until the execution of the
bulk statement is completed.

4.5 System architecture

Figure 2 summarizes all the components of our proposed
architecture. The update expansion module is responsible
for the transformation of bulk statements [1]. It consists of
two layers that operate in a cascading sequence.

The data extraction layer first instantiates a query upon
the query engine [2]. This query is directly drawn from
the user update; precisely, the ForClause, LetClause and
WhereClause of the update are directly replicated in the
query. Then, the query accesses the XML repositories to re-
trieve the relevant fragments RF [3] that are taken as inputs
[4] by the statement expansion layer. This layer is responsi-
ble for the effective instantiation of the expansion algorithm
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over the user update. The result is the list of statements and
directives [5](displayed as circles and boxes in the figure)
that have been given as outputs by the algorithm.

Directives [6] are commands directly issued to the rule
engine; they schedule the times at which the the conflict
sets are calculated. The rule engine searches the rule repos-
itory [7] for rules addressing the nodes on which the re-
ferred statement Sn operates and whose triggering event
matches the operation type. A rule might have more than
one activation, since many similar nodes can be affected
by Sn, and each rule instance is provided with the two
pointers OLD NODE(S) and NEW NODE(S), that represent
the old/new fragment(s) (one of them might be set to null).

All triggered rules are collected in a conflict set (CS),
where they are ordered with respect to their priority. Note
that node level and statement level rules are mixed in CS,
and that CS contains rules addressing nodes with different
tagnames as well, since Sn affects all subelements and at-
tributes of a single node. Only the actions of those rules
with true condition are performed.

Statement A1 can be a bulk statement itself, and thus it
must be processed by a recursive replication of the abstract
machine described in figure 2. If we imagine a scenario in
which the execution of a rule’s action causes another [cas-
cading] rule to activate, we can represent the resulting stack
of execution contexts like in figure 3. Here statement USt
triggers rule R1, the action A1 of R1 is itself expanded,
it triggers rule R2 and an update is eventually performed,
since statement a21 causes no rule activation (the conflict
sets related to a21 are empty).

5 Open Issues

Our study let us foresee several optimization and re-
search issues, briefly discussed below.

� Schema-driven optimization. The expansion of bulk
statements can benefit of the availability of the docu-
ments schema, either expressed as a DTD or in terms
of XML Schema. In particular, it is possible to avoid
expanding the updates relative to those parts of a docu-
ment that do not activate rules. Such an optimization is
relevant within most XML repositories, as few of their
element types correspond to distinctive real-world en-
tities and are therefore targeted to triggers.

� Internal optimizations. Specialized indexing tech-
niques can be devised in order to optimize the rule en-
gine for repeated executions of the same query over
different fragments, e.g. by adding data structures
which point to “sibling” nodes. Such data structures
can be set up by the expansion module, as it is aware
of both the queries and the fragments. Other indexes
may link the nodes of the XML repository to rules in
the rule repository, in order to facilitate the extraction
of the rules which are triggered by given operations.

� Limitations of expressive power. As with the SQL3
standard, the class of “legal” BEFORE triggers remains
to be defined [CKM99]. A simple solution can be
excluding from their actions any update operation or
lookup into transition variables, but this in practice
limits the expressive power of BEFORE triggers to er-
ror signalling. In many cases, however, such lookups



and updates do not cause any inconsistency; therefore,
the class of “legal” triggers - maybe relative to given
XML schemas or documents - remains to be defined.

� Definition of illegal executions. Similarly, certain
classes of executions are illegal, for instance when the
update performed by a trigger affects the data which
have caused the triggering, thus yielding to contra-
dictory situations. Such illegal executions should be
identified, and execution-time “traps” should be instru-
mented in order to detect them.

� Compile-time trigger analysis. Trigger analysis, ap-
plied to a given XML repository and rule set, could be
used to detect anomalous behavior, such as the lack of
termination or confluence [WC96]; conversely, trigger
analysis could be used to “validate” triggers, thus ex-
cluding that a given rule set could lead to any illegal
execution. These techniques are defined for relational
triggers but need to be extended for XQuery triggers.

6 Conclusions

In this paper, we have defined an extension of XQuery
which enables trigger definition and management. We
aimed at compatibility with SQL3, in spite of some diffi-
culties due to “bulk” updates and to the hierarchical nature
of XML; this goal has been achieved by defining a rule exe-
cution scheme based on the preliminary expansion of user-
provided update statements. The main advantage produced
by this approach is the clean separation between the rule
engine and the query optimizer, yielding to a modular ar-
chitecture in which the query optimizer can be plugged in.
We plan to develop a prototype of such architecture as soon
as the W3C will endorse an extension of the XQuery lan-
guage supporting updates; we also hope that this article will
contribute to the discussion on query language standards for
XML within the W3C.
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