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Abstract. Tree patterns are fundamental to querying tree-structured
data like XML. Because of the heterogeneity of XML data, it is of-
ten more appropriate to permit approximate query matching and return
ranked answers, in the spirit of Information Retrieval, than to return only
exact answers. In this paper, we study the problem of approximate XML
query matching, based on tree pattern relaxations, and devise efficient
algorithms to evaluate relaxed tree patterns. We consider weighted tree
patterns, where exact and relaxed weights, associated with nodes and
edges of the tree pattern, are used to compute the scores of query an-
swers. We are interested in the problem of finding answers whose scores
are at least as large as a given threshold. We design data pruning algo-
rithms where intermediate query results are filtered dynamically during
the evaluation process. We develop an optimization that exploits scores
of intermediate results to improve query evaluation efficiency. Finally,
we show experimentally that our techniques outperform rewriting-based
and post-pruning strategies.

1 Introduction

With the advent of XML, querying tree-structured data has been a subject
of interest lately in the database research community, and tree patterns are
fundamental to XML query languages (e.g., [2,6, 11]). Due to the heterogeneous
nature of XML data, exact matching of queries is often inadequate. We believe
that approximate matching of tree pattern queries and returning a ranked list
of results, in the same spirit as Information Retrieval (TR) approaches, is more
appropriate. A concrete example is that of querying a bibliographic database,
such as DBLP [4]. Users might ask for books that have as subelements an isbn, a
url, a cdrom and an electronic edition ee. Some of these are optional subelements
(as specified in the DBLP schema) and very few books may have values specified
for all these subelements. Thus, returning books that have values for some of
these elements (say isbn, url and ee), as approximate answers, would be of
use. Quite naturally, users would like to see such approximate answers ranked
by their similarity to the user query.

Our techniques for approximate XML query matching are based on tree pat-
tern relaxations. For example, node types in the query tree pattern can be re-
laxed using a type hierarchy (e.g., look for any document instead of just books).



Similarly, a parent-child edge in the query tree pattern can be relaxed into an
ancestor-descendant one (e.g., look for a book that has a descendant isbn subele-
ment instead of a child isbn subelement). Exact matches to such relaxations of
the original query are the desired approximate answers.

One possibility for ranking such approximate answers is based on the number
of tree pattern relaxations applied in the corresponding relaxed query. To permit
additional flexibility in the ranking (e.g., a book with a descendant isbn should
be ranked higher than a document with a child isbn, even though each of these
answers is based on a single relaxation), we borrow an idea from IR and consider
weighted tree patterns. By associating exact and relaxed weights with query tree
pattern nodes and edges, we allow for a finer degree of control in the scores
associated with approximate answers to the query.

A query tree pattern may have a very large number of approximate answers,
and returning all approximate answers is clearly not desirable. In this paper, we
are interested in the problem of finding answers whose scores are at least as large
as a given threshold, and we focus on the design of efficient algorithms for this
problem. Our techniques are also applicable for the related problem of finding
the top-k answers, i.e., the answers with the k largest scores; we do not discuss
this problem further in the paper because of space limitations.

Given a weighted query tree pattern, the key problem is how to evaluate all
relaxed versions of the query efficiently and guarantee that only relevant an-
swers (i.e., those whose scores are as large as a given threshold) are returned.
One possible way is to rewrite the weighted tree pattern into all its relaxed
versions and apply multi-query evaluation techniques exploiting common subex-
pressions. However, given the exponential number of possible relaxed queries,
rewriting-based approaches quickly become impractical. We develop instead (in
Section 4) an algebraic representation where all our tree pattern relaxations can
be encoded in a single evaluation plan that uses binary structural joins [1,19].
A post-pruning evaluation strategy, where all answers are computed first, and
only then is pruning done, is clearly sub-optimal. Hence, we develop algorithms
that eliminate irrelevant answers “as soon as possible” during query evaluation.
More specifically, our technical contributions are as follows:

— We design an efficient data pruning algorithm Thres that takes a weighted
query tree pattern and a threshold and computes all approximate answers
whose scores are at least as large as the threshold (Section 5).

— We propose an adaptive optimization to Thres, called OptiThres, that uses
scores of intermediate results to dynamically “undo” relaxations encoded in
the evaluation plan, to ensure better evaluation efficiency, without compro-
mising the set of answers returned (Section 6).

— Finally, we experimentally evaluate the performance of our algorithms, using
query evaluation time and intermediate result sizes as metrics. Our results
validate the superiority of our algorithms, and the utility of our optimiza-
tions, over post-pruning and rewriting-based approaches (Section 7).

In the sequel, we first present related work in Section 2, and then present
preliminary material in Section 3.



2 Related Work

Our work is related to the work done on keyword-based search in Information
Retrieval (TR) systems (e.g., see [15]). There has been significant research in
IR on indexing and evaluation heuristics that improve the query response time
while maintaining a constant level of relevance to the initial query (e.g., see [7,
13,18]). However, our evaluation and optimization techniques differ significantly
from this IR work, because of our emphasis on tree-structured XML documents.
We classify more closely related work into the following three categories.

Language Proposals for Approzimate Matching: There exist many language pro-
posals for approximate XML query matching (e.g., see [3,8,9,12,16,17]). These
proposals can be classified into content-based approaches and approaches based
on hierarchical structure. In [16], the author proposes a pattern matching lan-
guage called approXQL, an extension to XQL [14]. In [8], the authors describe
XIRQL, an extension to XQL [14] that integrates IR features. XIRQL’s features
are weighting and ranking, relevance-oriented search, and datatypes with vague
predicates. In [17], the authors develop XXL, a language inspired by XML-QL [6]
that extends 1t for ranked retrieval. This extension consists of similarity condi-
tions expressed using a binary operator that expresses the similarity between
an XML data value and an element variable given by a query (or a constant).
These works can be seen as complementary to ours, since we do not propose any
query language extension in this paper.

Specification and Semantics: A query can be relaxed in several ways. In [5], the
authors describe querying XML documents in a mediated environment. Their
specifications are similar to our tree patterns. The authors are interested in re-
laxing queries whose result is empty, and they propose three kinds of relaxations:
unfolding a node (replicating a node by creating a separate path to one of its
children), deleting a node and propagating a condition at a node to its parent
node. However, they do not discuss efficient evaluation techniques for their re-
laxed queries. Another interesting study is the one presented in [16] where the
author considers three relaxations of an XQL query: deleting nodes, inserting
intermediate nodes and renaming nodes. These relaxations have their roots in
the work done in the combinatorial pattern matching community on tree edit
distance (e.g., see [20]). A key difference with our work is that these works do
not consider query weighting, which is of considerable practical importance.

Recently, Kanza and Sagiv [10] proposed two different semantics, flexible
and semiflexible, for evaluating graph queries against a simplified version of the
Object Exchange Model (OEM). Intuitively, under these semantics, query paths
are mapped to database paths, so long as the database path includes all the
labels of the query path; the inclusion need not be contiguous or in the same
order; this is quite different from our notion of tree pattern relaxation. They
identify cases where query evaluation is polynomial in the size of the query,
the database and the result (i.e., combined complexity). However, they do not
consider scoring and ranking of query answers.



Approrimate Query Matching: There exist two kinds of algorithms for approx-
imate matching in the literature: post-pruning and rewriting-based algorithms.
The complexity of post-pruning strategies depends on the size of query answers
and a lot of effort can be spent in evaluating the total set of query answers even
if only a small portion of it is relevant. Rewriting-based approaches can generate
a large number of rewritten queries. For example, in [16], the rewritten query
can be quadratic in the size of the original query. In our work, we experimentally
show that our approach outperforms post-pruning and rewriting-based ones.

3 Overview

3.1 Background: Data Model and Query Tree Patterns

We consider a data model where information is represented as a forest of node
labeled trees. Each non-leaf node in the tree has a type as its label, where types
are organized in a simple inheritance hierarchy. Each leaf node has a string value
as its label. A simple database instance is given in Figure 1.

Fundamental to all existing query languages for XML (e.g., [2,6,11]) are
tree patterns, whose nodes are labeled by types or string values, and whose
edges correspond to parent-child or ancestor-descendant relationships. These
tree patterns are used to match relevant portions of the database. While tree
patterns do not capture some aspects of XML query languages, such as ordering
and restructuring, they form a key component of these query languages. Figure 1
shows an example query tree pattern (ignore the numeric labels on the nodes
and edges for now). A single edge represents a parent-child relationship, and a
double edge represents an ancestor-descendant relationship.

3.2 Relaxed Queries and Approximate Answers

The heterogeneity of XML data makes query formulation tedious, and exact
matching of query tree patterns often inadequate. The premise of this paper
i1s that approzimate matching of query tree patterns and returning a ranked list
of answers, in the same spirit as keyword-based search in Information Retrieval
(IR) is often more appropriate.

Our techniques for approximate XML query matching are based on tree pat-
tern relaxations. Intuitively, tree pattern relaxations are of two types: content re-
laxation and structure relaxation. We consider four specific relaxations, of which
the first two are content relaxations, and the last two are structure relaxations.

Node Generalization : This permits the type of a query node to be gener-
alized to a super-type. For example, in the query tree pattern of Figure 1,
Book can be generalized to Document, allowing for arbitrary documents (that
match the other query conditions) to be returned instead of just books.

Leaf Node Deletion : This permits a query leaf node (and the edge connecting
it to its parent node in the query) to be deleted. For example, in the query
tree pattern of Figure 1, the Collection node can be deleted, allowing for



books that have an editor (with a name and address) to be returned, whether
or not they belong to a collection.

Edge Generalization : This permits a parent-child edge in the query to be
generalized to an ancestor-descendant edge. For example, in the query tree
pattern of Figure 1, the edge (Book, Editor) can be generalized, allowing for
books that have a descendant editor (but not a child editor) to be returned.

Subtree Promotion : This permits a query subtree to be promoted so that
the subtree is directly connected to its former grandparent by an ancestor-
descendant edge. For example, in the query tree pattern of Figure 1, the
leaf node Address can be promoted, allowing for books that have a descen-
dant address to be returned, even if the address does not happen to be a
descendant of the editor child of the book.

Having identified the individual tree pattern relaxations we consider, we are
now in a position to define relaxed queries and approximate answers.

Definition 1 [Relaxed Query, Approximate Answer]| Given a query tree
pattern @, a relaxed query Q' is a non-empty tree pattern obtained from @ by
applying a sequence of zero or more of the four relarations: node generalization,
leaf node deletion, edge generalization and subtree promotion.

We refer to a node (resp., edge) in a relared query that has been affected by
a tree pattern relaration as a relaxed node (resp., relaxed edge). The nodes and
edges that are not affected by a tree pattern relaration are referred to as exact
nodes and exact edges.

An approximate answer to @ is defined as an eract match to some relared
query obtained from Q. a

Note that, by definition, the original query tree pattern is also a relaxed
query, and hence exact matches to the original query tree pattern are included
in the set of approximate answers to a query.

Note that the tree relaxations we consider have several interesting properties.
First, the number of nodes in a relaxed query is no more than in the original
query. Second, an answer to the original query continues to be an answer to a
relaxed query. Finally, each individual tree pattern relaxation is local, involving
either a single node/edge change (in the cases of node generalization and edge
generalization), or two changes (in the cases of leaf node deletion and subtree
promotion). These properties will serve as the bases for efficient algorithms for
the computation of approximate answers.

3.3 Answer Ranking, Weighted Tree Patterns and Answer Scores

Returning approximate answers in ranked order, based on the extent of approx-
imation, is important, as is evident from IR research and web search engines.
One possibility for ranking such approximate answers is based on the number
of tree pattern relaxations present in the corresponding relaxed query, i.e., all
answers corresponding to relaxed queries with the same number of relaxations



have the same rank. While such a coarse ranking may suffice for some applica-
tions, additional flexibility is typically desirable. For this purpose, we consider
weighted tree patterns, defined as follows.

Definition 2 [Weighted Tree Pattern] A weighted tree pattern is a tree
pattern where each node and edge is assigned two non-negative integer weights:
an eract weight ew, and a relared weight rw, such that ew > rw. a

Figure 1 shows an example of a weighted query tree pattern. A detailed
discussion of the origin of query weights is outside the scope of this paper. It may
be specified by the user, determined by the system (e.g., in a fashion analogous
to inverse document frequency, used in TR), or a combination of both. What is
important to keep in mind is that once these weights are chosen, our techniques
can be used for efficient computation of approximate answers.

Relaxation of a weighted query tree pattern results in a weighted tree pattern
as well. The weights on nodes and edges in a relaxed query Q' are used to
determine scores of the corresponding matches, by adding up the contributions
of the individual nodes and edges in @', as follows:

— The contribution of an exact node or edge, ne, in @’ to the score of an exact
match A’ to @' is its exact weight ew(ne).

— The contribution of a relaxed node or edge, ne, in @’ to the score of an exact
match A’ to Q' is required to be no less than its relaxed weight rw(ne), and
no more than its exact weight ew(ne).

A simple approach, which we use in our examples and our experiments, is to
make the relaxed weight rw(ne) be the contribution of the relaxed node or edge
ne. More sophisticated alternatives are possible as well. We do not discuss these
further for reasons of space.

As an example, the score of exact matches of the weighted query tree pattern
in Figure 1 is equal to the sum of the exact weights of its nodes and edges, i.e.,
45. If Book is generalized to Document, the score of an approximate answer that
is a document (but not a book) is the sum of the relaxed weight of Book and the
exact weights of the other nodes and edges in the weighted query, i.e., 39.

In general, an approximate answer can match different relaxed queries, and,
depending on how one defines the contributions due to relaxed nodes and edges,
may end up with different scores. To deal with such a situation, we define the
score of an approximate answer as follows.

Definition 3 [Score of an Approximate Answer] The score of an approz-
imate answer is the mazimum among all scores computed for it. a

We are now finally ready to define the problem that we address in this paper.

3.4 Problem Definition

A query tree pattern may, in general, have a very large number of approxi-
mate answers, and returning all approximate answers to the user is clearly not
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desirable. In this paper, we focus on an approach to limiting the number of
approximate answers returned based on a threshold.

Definition 4 [Threshold Problem] Given a weighted query tree pattern @
and a threshold t, the threshold problem s that of determining all approrimate
answers of ) whose scores are > t. a

4 Encoding Relaxations in a Query Evaluation Plan

4.1 Query Evaluation Plan

Several query evaluation strategies have been proposed for XML (e.g., [11, 19]).
They typically rely on a combination of index retrieval and join algorithms using
specific structural predicates. For the case of tree patterns, the evaluation plans
make use of two binary structural join predicates: ¢(ny1,n3) to check for the
parent-child relationship, and d(n1, n2) to check for the ancestor-descendant one.

The query evaluation techniques we have developed (and will present in sub-
sequent sections), for efficiently computing approximate answers, rely on the use
of such join plans to evaluate tree patterns.’ Figure 1 shows a translation of the
(unweighted) query tree pattern of Figure 1 into a left-deep, join evaluation plan
with the appropriate structural predicates. According to this evaluation plan, an
answer to a query is an n-tuple containing a node match for every leaf node in
the evaluation plan (i.e., for every node in the query tree pattern).

! However, our techniques are not limited to using a particular join algorithm, even
though we use the stack-based join algorithms of [1] in our implementation.
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4.2 Encoding Tree Pattern Relaxations

We show how tree pattern relaxations can be encoded in the evaluation plan.
Figure 2 presents some example relaxations of the (unweighted) query tree pat-
tern of Figure 1, and specifies how the query evaluation plan of Figure 1 needs
to be modified to encode these relaxations. The modifications to the initial eval-
uation plan are highlighted with bold dashed lines. Predicates irrelevant to our
discussion are omitted.

Node Generalization: In order to encode a node generalization in an evalua-
tion plan, each predicate involving the node type is replaced by a predicate on
its super-type. For example, Figure 2 depicts how Book can be generalized to
Document in the evaluation plan.

Edge Generalization: In order to capture the generalization of a parent-child
edge to an ancestor-descendant edge in an evaluation plan, we transform the
join predicate ¢(m1, 72) into the predicate:

e(r1,m2) OR (( B ¢(71,m)) AND d(71, m2))



This new join predicate can be checked by first determining if a parent-child
relationship exists between the two nodes, and then, if this relationship doesn’t
exist, determining if an ancestor-descendant relationship exists between them.
For example, Figure 2 depicts how the parent-child edge (Editor, Name) can be
generalized to an ancestor-descendant edge in the evaluation plan.

In subsequent figures, this predicate is simplified to (e(r1, 72) OR d(71, 12)),
where the OR has an ordered interpretation (check ¢(7y, ) first, d(71, 72) next).

Leaf Node Deletion: To allow for the possibility that a given query leaf node
may or may not be matched, the join that relates the leaf node to its parent
node in the query evaluation plan becomes an outer join. More specifically, it
becomes a left outer join for left-deep evaluation plans. For example, Figure 2
illustrates how the evaluation plan is affected by allowing the Address node to
be deleted. The left outer join guarantees that even books whose editor does not
have an address will be returned as an approximate answer.

Subtree Promotion: This relaxation causes a query subtree to be promoted to
become a descendant of its current grandparent. In the query evaluation plan,
the join predicate between the parent of the subtree and the root of the subtree,
say jp(7i,72) needs to be modified to:

jp(71,72) OR (( B jp(71,72)) AND d(73,72))

where 73 is the type of the grandparent. For example, Figure 2 illustrates how
the evaluation plan is affected by promoting the subtree rooted at Name.

Again, in subsequent figures, this new join predicate is simplified to (¢(m1, 72)
OR d(r3, m)), where the OR has an ordered interpretation.

Combining Relazations: Figure 3(a) shows the evaluation plan obtained by en-
coding all possible tree pattern relaxations of the query tree pattern of Figure 1.
Each node is generalized if a type hierarchy exists (in our example query, only
Book becomes Document). All parent-child edges are generalized to ancestor-
descendant edges. All nodes, except the tree pattern root, are made optional.
Finally, all subtrees are promoted. Note that even non-leaf nodes such as Editor
can be deleted once its subtrees are promoted, and it becomes a leaf node.

5 An Efficient Solution to the Threshold Problem

The goal of the threshold approach is to take a weighted query tree pattern and
a threshold, and generate a ranked list of approximate answers whose scores are
at least as large as the threshold, along with their scores. A simple approach to
achieve this goal is to (i) translate the query tree pattern into a join evaluation
plan, (ii) encode all possible tree pattern relaxations in the plan (as described in
Section 4), (iii) evaluate the modified query evaluation plan to compute answers
to all relaxed queries (along with their scores), and (iv) finally, return answers
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whose scores are at least as large as the threshold. We show that this post-
pruning approach is suboptimal since it is not necessary to first compute all
possible approximate answers, and only then prune irrelevant ones.

In order to compute approximate answers more efficiently, we need to de-
tect, as soon as possible during query evaluation, which intermediate answers
are guaranteed to not meet the threshold. For this purpose, we took inspiration
from evaluation algorithms in IR for keyword-based searches, and designed Al-
gorithm Thres. Thres operates on a join evaluation plan. Before describing this
algorithm, we discuss an example to illustrate how approximate answer scores
are computed at each step of the join evaluation plan.

5.1 Computing Answer Scores: An Example

The following algebraic expression (a part of the join plan of Figure 3) illustrates
the types of results computed during the evaluation of the join plan:

Document c(Document ,Collection) OR d(Document,Collection) Collection

Suppose that the node Document is a generalization of an initial node Book.
Evaluating Document (say, using an index on the node type) results in two kinds



of answers: (i) answers whose type is the exact node type Book, and (ii) answers
whose type is the relaxed node type Document, but not Book. An answer in the
first category is assigned the exact weight of this node as its score, i.e., 7. An
answer in the second category is assigned the (typically smaller) relaxed weight
as its score, 1.e., 1.

Let doc denote answers of type Document (with score s1) and col denote
answers of type Collection (with score s3). The result of the above algebraic
expression includes three types of answers:

— (doc, col) pairs that satisfy the structural predicate ¢(doe, col).

— (doc, col) pairs that do not satisfy ¢(doc, col), but satisfy the structural pred-
icate d(doc, col).

— doc’s that do not join with any col via ¢(doc, col) or d(doc, col).

The score of a (doc,col) pair is computed as s; + s2 + s(doe, col), where
s(doc, col) is the contribution due to the edge between Document and Collection
in the query (see Section 3.3 for more details). The score of a doc that does not
join with any col is s1.

5.2 Algorithm Thres

The basis of Algorithm Thres, which prunes intermediate answers that cannot
possibly meet the specified threshold, is to associate with each node in the join
evaluation plan, its mazrimal weight, maxW, defined as follows.

Definition 5 [Maximal Weight] The maximal weight, maxW, of a node in the
evaluation plan is defined as the largest value by which the score of an interme-
diate answer computed for that node can grow. a

Consider, for example, the evaluation plan in Figure 3. The maxW of the
Document node is 38. This number is obtained by computing the sum of the
exact weights of all nodes and edges of the query tree pattern, excluding the
Document node itself. Similarly, maxW of the join node with Editor as its right
child i1s 21. This is obtained by computing the sum of the exact weights of
all nodes and edges of the query tree pattern, excluding those that have been
evaluated as part of the join plan of the subtree rooted at that join node. By
definition, maxW of the last join node, the root of the evaluation plan, is 0.

Algorithm Thres is summarized in Figure 4. It needs maxW to have been
computed at each node of the evaluation plan. The query evaluation plan is
executed in a bottom-up fashion. At each node, intermediate results, along with
their scores, are computed. If the sum of the score of an intermediate result
and maxW at the node does not meet the threshold, this intermediate result is
eliminated. Note that Figure 4 shows a nested loop join algorithm for simplicity
of exposition. The algorithms we use for inner joins and left outer joins are based
on the structural join algorithms of [1].



Algorithm Thres(Node n)
if (n is leaf) {
list = evaluatelLeaf(n);
for (r in list)
if (r->score + n->maxW > threshold) append r to results;
return results; }
listl = Thres(n->left);
list2 = Thres(n->right);
for (r1 in list1) {
for (r2 in 1list?2) {
if (checkPredicate(rl,r2,n->predicate))
s = computeScore(rl,r2,n->predicate);
if (s + n->maxW > threshold)
append (rl,r2) to results with score s; }
if (A r2 that joins with ril)
if (r1->score + n->maxW > threshold)
append (rl,-) to results with score ril->score;

}

return results;

Fig. 4. Algorithm Thres

6 An Adaptive Optimization Strategy

6.1 Algorithm OptiThres

The key idea behind OptiThres, an optimized version of Thres, is that we can
predict, during evaluation of the join plan, if a subsequent relaxation produces
additional matches that will not meet the threshold. In this case, we can “undo”
this relaxation in the evaluation plan. Undoing this relaxation (e.g., converting
a left outer join back to an inner join, or reverting to the original node type)
improves efficiency of evaluation since fewer conditions need to be tested and
fewer intermediate results are computed during the evaluation.

While Algorithm Thres relies on maxW at each node in the evaluation plan to
do early pruning, Algorithm OptiThres additionally uses three weights at each
join node of the query evaluation plan:

— The first weight, relaxNode, is defined as the largest value by which the
score of an intermediate result computed for the left child of the join node
can grow if it joins with a relaxed match to the right child of the join node.
This is used to decide if the node generalization (if any) of the right child of
the join node should be unrelaxed.

— The second weight, relaxJoin, is defined as the largest value by which the
score of an intermediate result computed for the left child of the join node
can grow if it cannot join with any match to the right child of the join node.



Algorithm OptiThres(Node n)
if (n is leaf) {
// evaluate, prune, and return results as in Algorithm Thres
}

listl = OptiThres(n->left);

/* maxLeft is set to the maximal score of results in listl */

if (maxLeft + relaxNode < threshold) unrelax(n->right);

list2 = OptiThres(n->right);

/* maxRight is set to the maximal score of results in 1list2 */

if (maxLeft 4 relaxJoin < threshold) unrelax(n->join);

if (maxLeft + maxRight + relaxPred < threshold)
unrelax(n->join->predicate);

// now, evaluate, prune and return join (and possibly outer join)

// results as in Algorithm Thres

Fig. 5. Algorithm OptiThres

This is used to decide if the join node should remain a left outer join, or
should go back to being an inner join.

— The third weight, relaxPred, is defined as the largest value by which the sum
of the scores of a pair of intermediate results for the left and right children of
the join node can grow if they are joined using a relaxed structural predicate.
This is used to decide if the edge generalization and subtree promotion should
be unrelaxed.

Algorithm OptiThres is given in Figure 5. Only the parts that are modifica-
tions to Algorithm Thres are specified, and we indicate where the code fragments
from Algorithm Thres need to be inserted. It is easy to see that OptiThres has
very few overheads over Algorithm Thres, since OptiThres makes use of the
maximal score of answers at each step of the evaluation process (which can be
maintained in limited space while the intermediate answers are being computed),
and some precomputed numbers at each node in the evaluation plan.

Finally, note that Algorithm OptiThres makes only local decisions about
undoing relaxations (not generalizing the right child of the join, turning the
outer join to an inner join, or turning the join predicate from descendant to
child). A natural question is whether a more global approach could do better.
It is not too difficult to see that applying OptiThres locally at each node is at
least as good as applying it globally since a global optimization would have to
rely on more conservative estimates of possible scores of intermediate results.

6.2 An Illustrative Example

We illustrate Algorithm OptiThres using an example. Consider the weighted
query tree pattern in Figure 6. This query looks for all Proceedings that have
as children subelements a Publisher and a Month. Exact and relaxed weights
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Fig. 6. A Simple OptiThres Example

are associated with each node and edge in the query tree pattern. Proceeding
is relaxed to Document, Publisher is relaxed to Person, the parent-child edges
are relaxed to ancestor-descendant ones, and nodes Person and Month are made
optional. The threshold is set to 14.

First, weights are computed at each evaluation plan node statically. Recall
that in our examples, we have chosen to use the relaxed weight as the contri-
bution due to matching a relaxed node or edge. For example, at the first join
node in the evaluation plan, relaxNode = 11 (ew(Month) + ew((Proceeding,
Month)) 4+ ew((Proceeding, Publisher)) + rw(Publisher)), relaxJoin = 8
(ew(Month) + ew((Proceeding, Month))), and relaxPred = 9 (ew(Month) +
ew((Proceeding, Month)) + rw((Proceeding, Publisher))).

Next, Algorithm OptiThres evaluates the annotated query evaluation plan
in Figure 6. Document is evaluated first. Assume that the maximal score in the
list of answers we get is 2, i.e., there are no Proceeding’s in the database.
At the next join, relaxNode = 11, relaxJoin = 8, and relaxPred = 9. The
sum relaxNode +2 = 13, which is smaller than the threshold. In this case,
OptiThres decides to unrelax Person to Publisher, and the plan is modified
suitably. Next, Publisher is evaluated, and let the maximal score in the result
list be 10 (i.e., exact matches were obtained). The sum relaxJoin +2 = 10,
which is also smaller than the threshold, and OptiThres decides to unrelax the
left outer join to an inner join, since we cannot “afford to lose Publisher”. The
algorithm then checks whether to retain the descendant structural predicate.
Since the sum relaxPred +2 + 10 = 21, which is larger than the threshold,
OptiThres decides to retain the relaxed structural join predicate d(Document,
Publisher).

During the evaluation of the first join, join results are pruned using maxW, as
in Algorithm Thres. Assume that the maximal score of answers in the first join
result is 14 (1042+2). OptiThres then uses the weights at the second join node
to determine whether any other relaxations need to be undone. Note that Month
node has not been generalized, and this is reflected in the fact that relaxNode
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Fig. 7. Queries Used in the Experiments

at the second join is not specified. Next, Month is evaluated, and matches have
a score of 2. The sum relaxJoin +14 = 14, which meets the threshold. So the
outer join is not unrelaxed. Similarly, relaxPred +14 + 2 = 18, which meets
the threshold. So the join predicate is not unrelaxed. Finally, the second join is
evaluated, and join results are pruned using maxW, as in Algorithm Thres.

The algebraic expression that we have effectively computed is given in Fig-
ure 6, where the dynamically modified portions of the evaluation plan are high-

lighted.

7 Experiments

7.1 Experimental Setup

We use the DBLP XML dataset which is approximately 85MBytes and contains
2.1M elements. Some information about relevant elements is given in the ta-
ble below. The DTD of this dataset as well as the data itself can be found at
http://dblp.uni-trier.de/db.

|Label |N0. of elementsHLabel |N0. of elements|

article 87,675 ||url 212,792
cdrom 13,052||ee 55,831
document 213,362 ||magazine 0
publisher 1,199||person | 448,788

In our type hierarchy, document is a super-type of book, incollection,
inproceedings, proceedings, article, phdthesis, mastersthesis, www and
magazine; and person is a super-type of author, editor and publisher. We use
the queries of Figure 7. Since the DTD does not have long root-to-leaf paths, we
do not consider edge generalization and subtree promotion in our experiments.

In order to prune data at each step of the query evaluation, we modified the
stack-based structural join algorithm of [1] so that each input (and output) is
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Fig. 9. Comparing OptiThres, Thres and postPrune

materialized in a file. We ran all our experiments on a HP-UX machine with
32MBytes of memory. In all experiments, query evaluation time is reported in
seconds and result sizes in the number of answers.

7.2 Studying Algorithm Thres

We use Q1 where url, ee, and cdrom are made optional and article is re-
laxed to document. We compare (i) the evaluation times for Thres (for multiple
thresholds) and postPrune, and (ii) the cumulative sizes of the data processed
by each algorithm. The results are given in Figure 8 where the X-axis represents
each step of Q1 evaluation. Figure 8(a) shows that the higher the threshold,
the earlier is irrelevant data pruned and the smaller is the evaluation time. This
is explained by the fact that with a higher threshold, the amount of data that
remains in the evaluation process is reduced (as shown in Figure 8(b)). For
postPrune, data pruning occurs only at the last step of query evaluation.



7.3 Benefit of Algorithm OptiThres

We compare postPrune, Thres and OptiThres. We use query Q2 with a thresh-
old = 5 because we want to illustrate how OptiThres decides that publisher
should not be relaxed to person. magazine is relaxed to document, publisher to
person, and person is made optional. Figure 9 shows an intermediate data size
and an evaluation time comparison. OptiThres detects that publisher should
not have been relaxed to person and should not have been made optional (the
outer join is turned back to an inner join). This is because there is no magazine in
the database, and the only instances that are selected when evaluating document
are documents that are not magazines. Thus, their scores are 2 and would not
meet the threshold if publisher is relaxed. The graphs of Figure 9(a) show that
both postPrune and Thres scan all of person which results in processing more
data than OptiThres (which scans only publisher). This also results in a higher
evaluation time as shown in Figure 9(b). In addition, since OptiThres performs
an inner join operation (instead of an outer join), there are evaluation time and
data size savings at the last step of query evaluation.

Since OptiThres prunes data earlier than the other strategies, it manipulates
the least amount of data, and thus its evaluation time is the smallest. Due to
its ability to undo unnecessary relaxations, OptiThres achieves a significant
improvement in query evaluation performance.

7.4 Comparison with Rewriting-Based Approaches

We run all our algorithms on query Q1 with a threshold set to 2 (to select a large
number of answers). We compare postPrune, OptiThres, MultiQOptim and
MultiQ. MultiQ and MultiQOptim are two rewriting-based approaches. MultiQ
is the case where we generate all relaxed versions of Q1 and execute each of them
separately. The total evaluation time is obtained by adding each of their evalu-
ation times. MultiQOptim is the case where we share common subexpressions.

postPrune took 22.384 seconds, OptiThres took 18.550, MultiQOptim took
30.782 and MultiQ took 40.842. Our results show that the execution time of
OptiThres is considerably faster than rewriting-based approaches. The reason
is that MultiQ performs 10 joins, MultiQOptim performs 8 joins and OptiThres
performs only 3 joins.

8 Conclusion

In this paper we have developed techniques for relaxing weighted query tree pat-
terns, and efficiently computing approximate answers to weighted tree patterns
by encoding the relaxations in join evaluation plans. Our preliminary experi-
mental evaluation has shown the benefits of our techniques over post-pruning
and rewriting-based approaches.

There are many interesting directions of future work in this area. What is
the analog of the ¢ f % idf score used in Information Retrieval for keyword-based



queries? How can one combine our optimizations with traditional cost-based join
ordering to identify the cheapest evaluation plan? How does one quickly estimate
the number of approximate answers that meet a given threshold? Solutions to
these problems will be important for the XML database systems of tomorrow.
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