Semantic Web

Dongwon Lee, Ph.D.
(Many Examples by A.M. Kuchling)
Semantic Web Video

http://youtu.be/OGg8A2zfWKg

An introduction to the Semantic Web

PennState
"The Semantic Web is an extension of the current web in which information is given well-defined meaning better enabling computers and people to work in cooperation…"

Motivation

- Current World-Wide Web is a geomantic conglomeration of information in distributed and heterogeneous environment
- Yet, the processing of such information is merely based on the *syntactic* matching of information
 - Eg, Web search using keyword matching
- More intelligent processing is needed with requirements:
 - Machine processing
 - Automatic processing
Current Web: Syntactic Web

Two prof “Dongwon Lee”:
One at PSU and
the other at Korea U.
Van, Turkey

This article is about a city in Turkey. For other uses, see Van (disambiguation).

Van (Armenian: Վան) is a city in eastern Turkey and the seat of Van Province, and is located on the eastern shore of Lake Van. The city's official population in 2009 was 360,810, but many estimates put this as much higher with a 1996 estimate stating 500,000 and former Mayor Burhan Yengin quoted as estimating the population at approximately 800,000.

Contents

1 History
 1.1 Ararat
 1.2 From the Orontids to the Kingdom of Armenia
 1.3 The Byzantines and the kingdom of Vaspurakan
 1.4 The Seljuk Empire
 1.5 The Ottoman Empire
 1.5.1 City life
 1.5.2 Demographics
 1.6 World War I and the Armenian Genocide
 1.7 Turkish War of Independence and Republic
2 Van today
3 Cuisine

Used Vans for Sale

2004 Ford Econoline 350 for $12,775
- Color-keyed engine console cover w/dual stowage, (4) cup holders, Black plastic stepwell pads,
- Posted by Haldeman Ford with Oodle Pro

2009 Chevrolet Express 2500 WORK VAN for $15,619
- Audio system, radio provisions only. Includes alarm warning chimes, radio wiring harness, radio,
- Posted by Archer Kia Volkswagen Automotive with Oodle Pro
Q: Search Chevrolet Express Van with less than 10K miles → Currently, hard to answer this query!
Current Web: Syntactic Web w. Links
Current Web: Syntactic Web

- Markup consists of:
 - Rendering information (e.g., font size and colour)
 - Hyper-links to related content
- Semantic content is accessible to humans but not (easily) to computers...
What Human Sees

About Penn State
Prospective Students
Academic Programs
Outreach Programs
Global Penn State
Campuses and Colleges
Visitors Guide
Alumni, Friends, and Giving …
What Machine Sees
Solution #1: XML w. Meaningful Tags

<School>
 <Name>_solution</Name>
 <TOC>
 <Description>
 <School> XML with Meaningful Tags </School>
 </Description>
 </TOC>
</School>
What Machine Sees from Solution #1

Better than before. Still NO clear and precise meanings of tags known to machines
What is Needed? → Semantic Web

- **External agreement** on meaning of annotations
 - E.g., Dublin Core (DC) agree on the meaning of a set of annotation tags for “documents”
 - But, limited number of things can be expressed
- Use **Ontologies** to specify **meaning** of annotations
 - Ontologies provide a vocabulary of terms
 - New terms can be formed by combining existing ones
 - Meaning (i.e., **semantics**) of such terms is formally specified
 - Can also specify relationships between terms in multiple ontologies
Solution #2: XML w. Semantic Tags

<School>
<Name>_solution</Name>
<TOC>
<Description/>
</School>
What Machine Sees from Solution #2

Official title of an institution

Clear and precise meanings of tags known to machines

Same meaning as <desc> from The namespace: http://foo.com/myown
W3C’s Ontology Languages

- RDF (Resource Description Framework)
 - Graphical formalism to represent metadata and describe semantics
 - http://www.w3.org/RDF/
- RDF-S (RDF Schema)
 - RDF with schema vocabulary
 - Class, Property, type, subClassOf, subPropertyOf, range, domain
 - http://www.w3.org/TR/rdf-schema/
- OWL (Web Ontology Language)
 - Knowledge representation language for making ontologies
 - Superset of RDF and RDF-S
RDF vs. RDF Schema vs. OWL

- **RDF:** assertion of facts
 - Resource X is named “Lee”
 - “Lee” is the author of resource X

- **RDF Schema:** vocabulary definition
 - There is a class called “Person”
 - “Dongwon Lee” is an instance of "Person"

- **OWL:** relationship among vocabularies
 - "Persons" in vocabulary A are the same thing as "People" in vocabulary B
 - Resource X and resource Y are referring to the same thing
 - If X → Y and Y → Z, then X → Z
#1. RDF: Basic Concepts

- RDF is a language for representing information about resources in the Web
 - http://www.w3.org/TR/rdf-primer/
- RDF is particularly intended for representing metadata about Web resources, such as:
 - Title, author, and modification date of a Web page
 - Copyright and licensing information about a Web document,
 - Availability schedule for some shared resource, etc
- RDF is intended for situations in which this information needs to be processed by software applications, rather than being only displayed to people.
The underlying structure of any expression in RDF is a collection of triples. Each consists of a subject, a predicate and an object:
- Subject
- Object (or literal)
- Predicate that denotes a relationship

Triple notation: <subject, predicate, object>
Imagine trying to state that someone named “John Smith” created a particular Web page.

- http://www.example.org/index.html has a creator whose value is John Smith

- **Subject**: the thing the statement describes (the Web page)
- **Object**: the thing the statement says is the value of this property (who the creator is), for the thing the statement describes
- **Predicate**: a specific property (creator) of the thing the statement describes
Triple Example 1

http://www.example.org/index.html

http://purl.org/dc/elements/1.1/creator

http://www.example.org/staffid/85740
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.example.org/index.html">
 <dc:creator rdf:resource = "http://www.example.org/staffid/85740"/>
 </rdf:Description>
</rdf:RDF>
Triple Example 1

- Every Description element describes a resource
- Every attribute or nested element inside a Description is a property of that Resource
- We can refer to resources by using URIs
- The object of a triple can also be a “literal” (a string)
Triple Example 2

- http://www.example.org/index.html has a **creation-date** whose value is August 16, 1999
- http://www.example.org/index.html has a **language** whose value is English
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:exterms="http://www.example.org/terms/">
 <rdf:Description rdf:about="http://www.example.org/index.html">
 <exterms:creation-date>August 16, 1999</exterms:creation-date>
 <exterms:language>English</exterms:language>
 </rdf:Description>
</rdf:RDF>
"There is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr."
<table>
<thead>
<tr>
<th>ID</th>
<th>Street</th>
<th>State</th>
<th>City</th>
<th>ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>85740</td>
<td>1501 Grant Avenue</td>
<td>MA</td>
<td>Bedford</td>
<td>01730</td>
</tr>
</tbody>
</table>

![Diagram of address components linked by URIs](http://www.example.org/terms/address)

Bedford

1501 Grant Avenue

Massachusetts

01730

http://www.example.org/staffid/85740

http://www.example.org/terms/address

http://www.example.org/terms/city

http://www.example.org/terms/postalCode

http://www.example.org/terms/street

http://www.example.org/terms/state
Some Well-known RDF Vocabularies

- **FOAF (Friend-Of-A-Friend):** describes People
 - Classes: Person
 - Properties: name, interest, mbox, schoolHomepage, workplaceHomepage
 - Namespace: http://xmlns.com/foaf/0.1/

- **DOAP (Description-Of-A-Project):** describes open-source Project

- **DC (Dublin Core):** describes document
 - Properties: title, creator, publisher, subject, ...
 - Namespace: http://purl.org/dc/elements/1.1/
Description about myself using FOAF syntax for crawling software

Eg, http://pike.psu.edu/dongwon/foaf.rdf

```xml
<rdf:RDF
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
   xmlns:foaf="http://xmlns.com/foaf/0.1/"
   xmlns:admin="http://webns.net/mvcb"/>
<foaf:PersonalProfileDocument rdf:about="">
  <foaf:maker rdf:resource="#me"/>
  <foaf:primaryTopic rdf:resource="#me"/>
</foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">
  <foaf:name>Dongwon Lee</foaf:name>
  <foaf:title>Professor</foaf:title>
  <foaf:givenname>Dongwon</foaf:givenname>
  <foaf:family_name>Lee</foaf:family_name>
  <foaf:mbox_sha1sum>12be8a0e055c93c16c3b01960a53ce4000d577d4</foaf:mbox_sha1sum>
  <foaf:homepage rdf:resource="http://pike.psu.edu/dongwon/"/>
  <foaf:depiction rdf:resource="http://nike.psu.edu/dongwon/images/paris-face.jpg"/>
  <foaf:phone rdf:resource="tel:814.865.0687"/>
  <foaf:workplaceHomepage rdf:resource="http://www.psu.edu/"/>
  <foaf:workInfoHomepage rdf:resource="http://pike.psu.edu/dongwon/pro"/>
  <foaf:schoolHomepage rdf:resource="http://www.cs.ucla.edu/"/>
</foaf:Person>
</rdf:RDF>
```
Dublin Core

- http://dublincore.org/
- Started in 1995 at Dublin, Ohio
- A minimal set of descriptive elements that facilitate the description and the automated indexing of document-like networked objects, in a manner similar to a library card catalog
- Initially intended for resource discovery (e.g., search engine)
- But expanded to be used with RDF
Dublin Core

- **Properties (or elements) defined in Dublin Core**
 - **Title**: A name given to the resource.
 - **Creator**: An entity primarily responsible for making the content of the resource.
 - **Subject**: The topic of the content of the resource.
 - **Description**: An account of the content of the resource.
 - **Publisher**: An entity responsible for making the resource available.
 - **Contributor**: An entity responsible for making contributions to the content of the resource.
 - **Date**: A date associated with an event in the life cycle of the resource.
 - **Type**: The nature or genre of the content of the resource.
 - **Format**: The physical or digital manifestation of the resource.
 - **Identifier**: An unambiguous reference to the resource within a given context.
 - **Source**: A reference to a resource from which the present resource is derived.
 - **Language**: A language of the intellectual content of the resource.
 - **Relation**: A reference to a related resource.
 - **Coverage**: The extent or scope of the content of the resource.
 - **Rights**: Information about rights held in and over the resource.
Eg, Using Dublin Core for IST516 Pages

```xml
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
  <rdf:Description rdf:about="https://online.ist.psu.edu/ist516/">
    <dc:title>IST516 Web Page</dc:title>
    <dc:description>This web page is intended to be used for students registered for IST516, 2011.</dc:description>
    <dc:creator rdf:resource="http://pike.psu.edu/dongwon/foaf.rdf"/>
    <dc:date>2011-10-07</dc:date>
    <dc:subject>
      <rdf:Bag>
        <rdf:li>Course Introduction</rdf:li>
        …
        <rdf:li>Course Schedule</rdf:li>
      </rdf:Bag>
    </dc:subject>
  </rdf:Description>
</rdf:RDF>
```
Eg, Using RDF: DC + FOAF

http://example.com/rev1

rev:subject

urn:isbn:1930110111

dc:publisher
Manning

dc:title
XSLT Quickly

FOAF:creator

http://example.com/author/0042

FOAF:homepage

http://www.snee.com/bob/

Bob

foaf:firstName

DuCharme

foaf:surname
RDF gives a formalism for meta data annotation, and a way to write it down in XML, but it does **NOT** give any special meaning to vocabulary such as `subClassOf` or `type`.

RDF Schema allows you to define vocabulary terms.
- It gives “extra meaning” to particular RDF predicates and resources.
- This “extra meaning”, or semantics, specifies how a term should be interpreted.
RDF Schema Example

- RDF Schema terms (just a few examples):
 - Class, Property
 - type, subClassOf, subPropertyOf
 - range, domain

- These terms are the RDF Schema building blocks (constructors) used to create vocabularies:

 <Person, type, Class>
 <hasColleague, type, Property>
 <Professor, subClassOf, Person>
 <Lee, type, Professor>
 <hasColleague, range, Person>
 <hasColleague, domain, Person>
#3 OWL (Web Ontology Language)

- OWL is built on top of RDF
- OWL is written in XML
- OWL is for processing information on the web
- OWL was designed to be interpreted by computers (i.e., not for humans)
- OWL has three sublanguages
- OWL is a web standard

http://www.w3schools.com/rdf/
Why OWL?

- XML tags values but doesn’t provide “meaning”
- RDF / RDF Schema support a way of “modeling” data and their inter-relationships
- But, for machines to perform tasks on dynamic web content:
 - Go beyond RDF and formally and precisely describe the meaning of terminology on the Web
 - Describe logical relationships for machines to reason unspecified (but logical) relationships

OWL does this!
Three Sublanguages of OWL

OWL Full

OWL DL

OWL Lite
Three Sublanguages of OWL

- **OWL Lite**
 - Stripped down version for users needing to represent simple constraints

- **OWL DL (Description Logics)**
 - Allows further expression of desired constraints
 - Still certain restrictions: E.g., all results must be computable and able to be finished

- **OWL Full**
 - Most expressive version of OWL
 - There are no computational guarantees
 - W3C, “*It is unlikely that any reasoning software will be able to support complete reasoning for every feature of OWL Full …*”
Basic OWL Lite Schema

- **Individual (or Objects or Instances)**
 - Eg, Dongwon Lee is an individual of Professor

- **Class**
 - Set of individuals (or objects)
 - Eg, The class Professor exists

- **rdf:Property**
 - States relationships between two individuals
 - Eg, hasStudent is a property of Dongwon Lee
 - Eg, hasAge is a property of Dongwon Lee, too
<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf:RDF
 xmlns:owl ="http://www.w3.org/2002/07/owl#"
 xmlns:us ="http://www.us.foo.com"
 xmlns:them ="http://www.foo.com">
 <owl:Ontology rdf:about=""/>
 <rdfs:comment>An example OWL ontology</rdfs:comment>
</owl:Ontology>

...
Classes: <owl:Class>

- Standard Class Creation
 <owl:Class rdf:ID="Person"/>

- Sub-Class Creation
 <owl:Class rdf:ID="Professor">
 <rdfs:subClassOf rdf:resource="#Person" />
 </owl:Class>
 <owl:Class rdf:ID="Student">
 <rdfs:subClassOf rdf:resource="#Person" />
 </owl:Class>

- Individual of a Class Creation
 <Professor rdf:ID="Dongwon Lee"/>
 <Student rdf:ID="John Doe"/>
Properties: <owl:ObjectProperty>

- Simple Property definition
 <owl:ObjectProperty rdf:ID="teachesTo"/>

- Same definition with some domain and range restrictions
 <owl:ObjectProperty rdf:ID="teachesTo">
 <rdfs:domain rdf:resource="#Professor"/>
 <rdfs:range rdf:resource="#Student"/>
 </owl:ObjectProperty>
Transitivity Property

Due to the transitivity, the following does NOT need to be said:

```xml
<Person rdf:id='John Doe'>
  <worksFor resource='#Graham Spanier'/>
</Person>
```
Symmetric Property

<owl:ObjectProperty rfd:ID=‘worksWith’>
 <rdf:type rdf:resource="&owl;SymmetricProperty" />
 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="#Person" />
</owl:ObjectProperty>

<Person rdf:ID=‘New Student’ >
 <worksWith rdf:ID=‘#John Doe’ >
</Person>

- Therefore, NO need to say

<Person rdf:ID=‘John Doe’ >
 <worksWith rdf:ID=‘#New Student’ >
</Person>
Using Protégé

- Protégé: a popular ontology editor to view, build, and reason ontologies
- Download latest version
 - http://protege.stanford.edu/
- One can use Protégé to:
 - View existing ontologies
 - Create new ontologies
 - Reason with ontologies
<?xml version="1.0"?>
<rdf:RDF xmlns="http://owl.cs.manchester.ac.uk/2009/07/sssw/pets#"
 xml:base="http://owl.cs.manchester.ac.uk/2009/07/sssw/pets"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:pets="http://owl.cs.manchester.ac.uk/2009/07/sssw/pets#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"">
 <owl:Ontology rdf:about=""/>
</rdf:RDF>
<owl:Class rdf:about="#Animal"/>

<owl:Class rdf:about="#Cat">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>

<owl:Class rdf:about="#Dog">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>

<owl:Class rdf:about="#Person"/>
<owl:ObjectProperty rdf:about="#hasPet">
 <rdfs:range rdf:resource="#Animal"/>
 <owl:inverseOf rdf:resource="#isPetOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isPetOf"/>

</rdf:RDF>
1. View Existing Ontologies

Welcome to Protégé

Create new OWL ontology
Open OWL ontology
Open OWL ontology from URI
Open from the TONES repository
Open recent

/Users/dlee/Desktop/pets.owl
/Users/dlee/Desktop/pizza.owl
1. View Existing Ontologies
2. Create New Ontologies

- **New Classes**
 - Cow is a sub class of Animal
 - Cow, Cat, Dog are disjoint each other
 - DogOwner is a sub class of Person
 - Who has some Dogs

- **New Individuals**
 - “Fluffy” is an individual of Cat
 - “Happy” is an individual of Dog
 - “Lee” is an individual of Person who owns a Dog
2. Create New Ontologies
3. Reason with Ontologies
More OWL Examples

- **Wine**

- **Meal**

- **Wine Agent 1.0**
 - http://onto.stanford.edu:8080/wino/index.jsp
RDF/OWL Validator

- http://www.w3.org/RDF/Validator/

- OWL is a type of RDF document

Check and Visualize your RDF documents

Enter a URI or paste an RDF/XML document into the text field above. A 3-tuple (triple) representation of the data model as well as an optional graphical visualization of the data model will be displayed.

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:dc="http://purl.org/dc/elements/1.1/>
    <rdf:Description rdf:about="http://www.w3.org/"
    </rdf:Description>
</rdf:RDF>
```
References

- RDF Primer

- Introduction to the Semantic Web and RDF, A.M. Kuchling
 - http://www.amk.ca/talks/2004-12-02/

- Tutorial on the W3C OWL

- OWL Web Ontology Language Overview
 - http://www.w3.org/TR/owl-features/

- Protégé Wiki
 - http://protegewiki.stanford.edu/wiki/Main_Page

- Protégé OWL Tutorial
 - http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/